The function of microparticles and the research progress of diabetes and microparticles

Min-dan Xu, Ke-qin Zhang

Abstract


MPs are vesicles released by cells when stimulated by physical (e.g. shear force) or chemical (e.g. agonists) factors, as well as cells undergoing apoptosis or exposed to inflammatory conditions . MPs are 100~1000 nm in diameter, have membrane cytoskeletons, express phosphatidylserine (PS) on the surface, and lack of nuclei. Surface molecules, enzymes, RNA and DNA are conveyed via MPs from origin cells to target cells. As mediators of information transfer, MPs have been proposed to impose pro-inflammatory and pro-coagulant effects in many disease states, such as cancer, venous thromboembolism, arteriosclerosis, and diabetes mellitus. The hypercoagulable state associated with diabetes is well recognized. More T2DM patients have died from thrombotic diseases. The endothelium-derived MPs in diabetic patients were elevated. TF-positive MPs concentration was increased and procoagulant activity of MPs was elevated. It is worth to research the role of MPs in the hypercoagulable state of diabetic patients.


Keywords


Microparticles; Tissue factor; Diabetes; Hypercoagulable

Full Text:

PDF (简体中文)

References


Hugel B, Martinez C, Kunzelmann C, et al. Membrane microparticles: two sides of the coin[J]. Physiology, 2005, 20:22-27. https://doi.org/10.1152/physiol.00029.2004

Enjeti AK, Lincz LF, Seldon M. Detection and measurement of microparticles: An evolving research tool for vascular biology[J]. Semin Thromb Hemost , 2007, 33(8) : 771-779. https://doi.org/10.1055/s-2007-1000369

Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13: 269-288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

Orozco A F, Lewis D E. Flow cytometric analysis of circulating microparticles in plasma[J]. Cytometry A, 2010, 77:502-514. https://doi.org/10.1002/cyto.a.20886

Banfi C, Brioschi M, Wait R, et al. Proteome of endothelial cell-derived procoagulant microparticles[J]. Proteomics, 2005, 5(17): 4443-4455. https://doi.org/10.1002/pmic.200402017

Dignat-George F, Boulanger C M. The many faces of endothelial microparticles[J]. Arterioscler Thromb Vasc Biol, 2011, 31, 27-33. https://doi.org/10.1161/ATVBAHA.110.218123

Morel O, Jesel L, Freyssinet JM, et al. Cellular mechanisms underlying the formation of circulating microparticles[J]. Arterioscler Thromb Vasc Biol, 2011, 31:15-16. https://doi.org/10.1161/ATVBAHA.109.200956

Berckmans RJ, Nieuwlands R, Boing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation[J]. Thromb Haemost, 2001, 85: 639-646. PMid:11341498

Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis[J]. Circ Res, 2011, 109: 593-606. https://doi.org/10.1161/CIRCRESAHA.110.233163

Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression[J]. J Cell Sci, 2010, 123: 1603-1611. https://doi.org/10.1242/jcs.064386

Cauwenberghs S, Feijge MA, Harper AG, et al. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton[J]. FEBS Lett, 2006, 580: 5313-5320. https://doi.org/10.1016/j.febslet.2006.08.082

Owens AP, 3rd,Mackman N. Microparticles in hemostasis and thrombosis[J]. Circ Res, 2011, 108: 1284-1297. https://doi.org/10.1161/CIRCRESAHA.110.233056

Key NS. Analysis of tissue factor positive microparticles[J]. Thromb Res, 2010, 125:s42-s45. https://doi.org/10.1016/j.thromres.2010.01.035

Morel O, Toti F, Hugel B, et al. Procoagulant microparticles: Disrupting the vascular homeostasis equation[J]? Arterioscler Thromb Vasc Biol, 2006, 6:2594-2604. https://doi.org/10.1161/01.ATV.0000246775.14471.26

Wiiger MT, Prydz H. The changing faces of tissue factor biology. A personal tribute to the understanding of the “extrinsic coagulation activation” [J]. Thromb Haemost, 2007, 98:38-42. https://doi.org/10.1160/th07-04-0289

Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27:1687-1693. https://doi.org/10.1161/ATVBAHA.107.141911

Giesen PL, Rauch U, Bohrmann B, et al. Blood-borne tissue factor: another view of thrombosis[J]. Proc Natl Acad Sci U S A, 1999, 96:2311-2315. https://doi.org/10.1073/pnas.96.5.2311

Chou J, Mackman N, Merrill-Skoloff G, et al. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation[J]. Blood, 2004, 104:3190-3197. https://doi.org/10.1182/blood-2004-03-0935

Siddiqui FA, Desai H, Amirkhosravi A, et al. The presence and release of tissue factor from human platelets[J]. Platelets, 2002, 13: 247-253. https://doi.org/10.1080/09537100220146398

Garcia BA, Smalley DM. The platelet microparticle proteome[J]. J Proteome Res, 2005, 4: 1516-1521. https://doi.org/10.1021/pr0500760

Gilbert GE, Sims PJ, Wiedmer T, et al. Platelet-derived microparticles express high affinity receptors for factor Ⅷ[J]. J Biol Chem, 1991, 266: 17261-17268.

Comfurius P, Senden JMG, Tilly RHJ, et al. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase[J]. Biopchim Biophys Acta, 1990, 1026:153 -160. https://doi.org/10.1016/0005-2736(90)90058-V

Hoffnan M, Monroe DM, Roberts HR. Coagulation factor Ⅸa binding to activated platelets and platelet-derived microparticles: a flow cytometric study[J]. Thromb Haemost, 1992, 68: 74-78.

Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets[J]. Thromb Haemost, 2007, 97: 425-434. https://doi.org/10.1160/th06-06-0313

Johnson GJ, Leis LA, Bach RR. Tissue factor activity of blood mononuclear cells is increased after total knee arthroplasty[J]. Thromb Haemost, 2009, 102:728-734. https://doi.org/10.1160/th09-04-0261

Losche W. Platelets and tissue factor[J]. Platelets, 2005, 16: 313-319. https://doi.org/10.1080/09537100500140190

Del Conde I, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood, 2005, 106: 1604-1611. https://doi.org/10.1182/blood-2004-03-1095

Nielsen CT, Ostergaard O, Johnsen C, et al. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus[J]. Arthritis Rheum, 2011, 63(10): 3067-3077. https://doi.org/10.1002/art.30499

Abatier F,Darmon P,Hugel B,et al. Type l and type 2 diabetic patients display different patterns of cellular microparticles[J]. Diabetes, 2002, 51(9): 2840-2845. https://doi.org/10.2337/diabetes.51.9.2840

Jimenez JJ,Jy W,Mauro LM,et al.Elevated endothelial microparticles in thrombotic thrombocytopenic purpura:findings from brain and renal microvascular cell culture and patients with active disease[J].Br J Haematol, 2001, 112(1): 81-90. https://doi.org/10.1046/j.1365-2141.2001.02516.x

Kagawa H, Komiyama Y, Nakamura S, et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells[J]. Thromb Res, 1998, 91: 297 - 304. https://doi.org/10.1016/S0049-3848(98)00108-X

Nomura S, Shouzu A, Omoto S, et al. Activated platelets and oxidized LDL induce endothelial membrane vesiculation: clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes[J]. Clin Appl Thromb/Hemost, 2004, 10: 205 - 215. https://doi.org/10.1177/107602960401000302

Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation[J]. Thromb Haemost, 2005, 3: 1301-1308. https://doi.org/10.1111/j.1538-7836.2005.01384.x

Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings[J]. Thromb Res, 2008, 123: 8-23. https://doi.org/10.1016/j.thromres.2008.06.006

Horstman LL, Jy W, Jimenez JJ, et al. Endothelial microparticles as markers of endothelial dysfunction[J]. Front Biosci, 2004, 9: 118-135. https://doi.org/10.2741/1270

Lacroix R, Dignat-George F. Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation[J]. Thromb Res, 2012, 129: s27-29. https://doi.org/10.1016/j.thromres.2012.02.025

Kushak RI, Nestoridi E, Lambert J, et al. Detached endothelial cells and microparticles as sources of tissue factor activity[J]. Thromb Res, 2005, 116: 409-419. https://doi.org/10.1016/j.thromres.2005.01.013

Aharon A, Katzenell S, Tamari T, et al. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications[J]. J Thromb Haemost, 2009, 7: 1047-1050. https://doi.org/10.1111/j.1538-7836.2009.03342.x

Steppich B, Mattisek C, Sobczyk D, et al. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction[J]. Thromb Haemost, 2005, 93: 35-39.

Tsimerman G, Roguin A, Bachar A, et al. Involvement of microparticles in diabetic vascular complications[J]. Thromb Haemost, 2011, 106: 310-321. https://doi.org/10.1160/TH10-11-0712

Aharon A, Brenner B. Microparticles, thrombosis and cancer[J]. Best Pract Res Clin Haematol, 2009, 22: 61-69. https://doi.org/10.1016/j.beha.2008.11.002

Perez-Casal M, Downey C, Fukudome K, et al. Activated protein C induces the release of microparticle-associated endothelial protein C receptor[J]. Blood, 2005, 105: 1515-1522. https://doi.org/10.1182/blood-2004-05-1896

Van Beers EJ, Schaap MC, Berckmans RJ, et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease[J]. Haematologica, 2009, 94: 1513-1519. https://doi.org/10.3324/haematol.2009.008938

Shah MD, Bergeron AL, Dong JF, et al. Flow cytometric measurement of microparticles: pitfalls and protocol modifications[J]. Platelets, 2008, 19: 365-372. https://doi.org/10.1080/09537100802054107

Connor DE, Exner T, Ma DD, et al. Detection of the procoagulant activity of microparticle-associated phosphatidylserine using XACT[J]. Blood Coagul Fibrinolysis, 2009, 20: 558-564. https://doi.org/10.1097/MBC.0b013e32832ee915

Rubin O, Crettaz D, Tissot JD, et al. Pre-analytical and methodological challenges in red blood cell microparticle proteomics[J]. Talanta, 2010, 82: 1-8. https://doi.org/10.1016/j.talanta.2010.04.025

Lacroix R, Judicone C, Mooberry M, et al. The, Isth S. S. C. Workshop. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop[J]. J Thromb Haemost, 2013, 11: 1190-1193. https://doi.org/10.1111/jth.12207

Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction[J]. N Engl J Med, 1998, 339: 229-234. https://doi.org/10.1056/NEJM199807233390404

Vazzana N, Ranalli P, Cuccurullo C, et al. Diabetes mellitus and thrombosis[J]. Thromb Res, 2012, 129(3): 371-377. https://doi.org/10.1016/j.thromres.2011.11.052

Hamed S, Brenner B, Roguin A. Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2[J]. Cardiovasc Res, 2011, 91: 9-15. https://doi.org/10.1093/cvr/cvq412

Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes[J]. Diab Vasc Dis Res, 2012, 7(4): 260-273. https://doi.org/10.1177/1479164110383723

Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles[J]. Diabetes, 2002, 51(9): 2840-2845. https://doi.org/10.2337/diabetes.51.9.2840

Tramontano AF, Lyubarova R, Tsiakos J, et al. Circulating Endothelial Microparticles in Diabetes Mellitus[J]. Mediators Inflamm, 2010, 16: 250476. https://doi.org/10.1155/2010/250476

Zhang X, McGeoch SC, Johnstone AM, et al. Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status[J]. J Thromb Thrombolysis, 2014,37(4): 455-463. https://doi.org/10.1007/s11239-013-1000-2

Salem MA, Adly AA, Ismail EA, et al. Platelets microparticles as a link between micro- and macro-angiopathy in young patients with type 1 diabetes[J]. Platelets, 2015, 25: 1-7. https://doi.org/10.3109/09537104.2015.1018880

Tsimerman G, Roguin A, Bachar A, et al. Involvement of microparticles in diabetic vascular complications[J]. Thromb Haemost, 2011, 106(2): 310-321. https://doi.org/10.1160/TH10-11-0712

Diamant M. Elevated Numbers of Tissue-Factor Exposing Microparticles Correlate With Components of the Metabolic Syndrome in Uncomplicated Type 2 Diabetes Mellitus[J]. Circulation, 2002, 106(19): 2442-2447. https://doi.org/10.1161/01.CIR.0000036596.59665.C6

Cheng F, Wang Y, Li J, et al. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans[J]. Int J Cardiol, 2013, 169(3):936-942. https://doi.org/10.1016/j.ijcard.2012.03.090




DOI: http://dx.doi.org/10.14725/gjems.v3n1.a1332

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Global Journal of Endocrinology and Metabolism Studies

ISSN  2374-8125(Online) ISSN ****-****(Print)